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Lecture 1

I motivation: physical and mathematical

I trans-series and resurgence

I divergence of perturbation theory in QM

I basics of Borel summation

I the Bogomolny/Zinn-Justin cancellation mechanism

I towards resurgence in QFT

I effective field theory: Euler-Heisenberg effective action



Physical Motivation

• infrared renormalon puzzle in asymptotically free QFT

• non-perturbative physics without instantons: physical
meaning of non-BPS saddles

• "sign problem" in finite density QFT

• exponentially improved asymptotics

Bigger Picture

• non-perturbative definition of non-trivial QFT, in the
continuum

• analytic continuation of path integrals

• dynamical and non-equilibrium physics from path
integrals

• uncover hidden ‘magic’ in perturbation theory



Physical Motivation
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Mathematical Motivation

Resurgence: ‘new’ idea in mathematics (Écalle, 1980; Stokes, 1850)

resurgence = unification of perturbation theory and
non-perturbative physics

• perturbation theory generally ⇒ divergent series

• series expansion −→ trans-series expansion

• trans-series ‘well-defined under analytic continuation’

• perturbative and non-perturbative physics entwined

• applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT,
String Theory, ...

• philosophical shift:
view semiclassical expansions as potentially exact



Resurgent Trans-Series

• trans-series expansion in QM and QFT applications:

f(g2) =

∞∑

p=0

∞∑

k=0

k−1∑

l=1

ck,l,p g
2p

︸ ︷︷ ︸
perturbative fluctuations

(
exp

[
− c

g2

])k

︸ ︷︷ ︸
k−instantons

(
ln

[
± 1

g2

])l

︸ ︷︷ ︸
quasi-zero-modes

• J. Écalle (1980): closed set of functions:

(Borel transform) + (analytic continuation) + (Laplace transform)

• trans-monomial elements: g2, e−
1
g2 , ln(g2), are familiar

• “multi-instanton calculus” in QFT

• new: analytic continuation encoded in trans-series

• new: trans-series coefficients ck,l,p highly correlated

• new: exponentially improved asymptotics



Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Écalle, 1980

n
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Perturbation theory

• perturbation theory generally → divergent series

e.g. QM ground state energy: E =
∑∞

n=0 cn (coupling)n

I Zeeman: cn ∼ (−1)n (2n)!

I Stark: cn ∼ (2n)!

I cubic oscillator: cn ∼ Γ(n+ 1
2)

I quartic oscillator: cn ∼ (−1)nΓ(n+ 1
2)

I periodic Sine-Gordon (Mathieu) potential: cn ∼ n!

I double-well: cn ∼ n!

note generic factorial growth of perturbative coefficients



Asymptotic Series vs Convergent Series

f(x) =

N−1∑

n=0

cn (x− x0)n +RN (x)

convergent series:

|RN (x)| → 0 , N →∞ , x fixed

asymptotic series:

|RN (x)| � |x− x0|N , x→ x0 , N fixed

−→ “optimal truncation”:

truncate just before the least term (x dependent!)



Asymptotic Series: optimal truncation & exponential
precision

∞∑

n=0

(−1)n n!xn ∼ 1
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optimal truncation: Nopt ≈ 1
x ⇒ exponentially small error

|RN (x)|N≈1/x ≈ N !xN
∣∣
N≈1/x

≈ N !N−N ≈
√
Ne−N ≈ e−1/x

√
x

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ

æ

0 5 10 15 20
N

0.912

0.914

0.916

0.918

0.920

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 6 8
N

0.75

0.80

0.85

0.90

(x = 0.1) (x = 0.2)



Borel summation: basic idea

write n! =
∫∞

0 dt e−t tn

alternating factorially divergent series:

∞∑

n=0

(−1)n n! gn =

∫ ∞

0
dt e−t

1

1 + g t
(?)

integral convergent for all g > 0: “Borel sum” of the series
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Borel summation: basic idea

write n! =
∫∞

0 dt e−t tn

non-alternating factorially divergent series:

∞∑

n=0

n! gn =

∫ ∞

0
dt e−t

1

1− g t (??)

pole on the Borel axis!

⇒ non-perturbative imaginary part

± i π
g
e
− 1
g

but every term in the series is real !?!
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Borel Summation: basic idea

Borel ⇒ Re
[ ∞∑

n=0

n!xn

]
= P

∫ ∞

0
dt e−t

1

1− x t =
1

x
e−

1
x Ei

(
1

x

)

0.5 1.0 1.5 2.0 2.5 3.0
x

-0.5

0.5

1.0

1.5

2.0



Borel summation

Borel transform of series f(g) ∼∑∞n=0 cn g
n:

B[f ](t) =

∞∑

n=0

cn
n!
tn

new series typically has finite radius of convergence.

Borel resummation of original asymptotic series:

Sf(g) =
1

g

∫ ∞

0
B[f ](t)e−t/gdt

warning: B[f ](t) may have singularities in (Borel) t plane



Borel singularities

avoid singularities on R+: directional Borel sums:

Sθf(g) =
1

g

∫ eiθ∞

0
B[f ](t)e−t/gdt

C+

C-

go above/below the singularity: θ = 0±

−→ non-perturbative ambiguity: ±Im[S0f(g)]

challenge: use physical input to resolve ambiguity



Borel summation: existence theorem (Nevanlinna & Sokal)

f(z) analytic in circle CR = {z :
∣∣z − R

2

∣∣ < R
2 }

f(z) =

N−1∑

n=0

an z
n +RN (z) , |RN (z)| ≤ AσN N ! |z|N

Borel transform

B(t) =

∞∑

n=0

an
n!
tn

R/2

analytic continuation to
Sσ = {t : |t− R+| < 1/σ}

f(z) =
1

z

∫ ∞

0
e−t/z B(t) dt

Re(t)

Im(t)

1/σ



Borel summation in practice

f(g) ∼
∞∑

n=0

cn g
n , cn ∼ βn Γ(γ n+ δ)

• alternating series: real Borel sum

f(g) ∼ 1

γ

∫ ∞

0

dt

t

(
1

1 + t

)(
t

βg

)δ/γ
exp

[
−
(
t

βg

)1/γ
]

• nonalternating series: ambiguous imaginary part

Re f(−g) ∼ 1

γ
P
∫ ∞

0

dt

t

(
1

1− t

)(
t

βg

)δ/γ
exp

[
−
(
t
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)1/γ
]

Im f(−g) ∼ ±π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]



Resurgence and Analytic Continuation

another view of resurgence:

resurgence can be viewed as a method for making formal
asymptotic expansions consistent with global analytic
continuation properties

⇒ “the trans-series really IS the function”

(question: to what extent is this true/useful in physics?)



Resurgence: Preserving Analytic Continuation

• zero-dimensional partition functions

Z1(λ) =
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• naively: Z1(−λ) = Z2(λ)

• connection formula: K0(e±iπ |z|) = K0(|z|)∓ i π I0(|z|)

⇒ Z1(e±iπ λ) = Z2(λ)∓ i e− 1
2λ Z1(λ)
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Resurgence: Preserving Analytic Continuation

• Borel summation

Z1(λ) =

√
π

2

1

2λ

∫ ∞

0
dt e−

t
2λ 2F1

(
1

2
,
1

2
, 1;−t

)

• directional Borel summation:

Z1(eiπ λ)− Z1(e−iπ λ)

=

√
π

2

1

2λ

∫ ∞

1
dt e−

t
2λ
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2F1
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Resurgence: Preserving Analytic Continuation

Stirling expansion for ψ(x) = d
dx ln Γ(x) is divergent

ψ(1 + z) ∼ ln z +
1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · ·+ 174611

6600z20
− . . .

• functional relation: ψ(1 + z) = ψ(z) + 1
z

formal series ⇒ Imψ(1 + iy) ∼ − 1
2y + π

2

• reflection formula: ψ(1 + z)− ψ(1− z) = 1
z − π cot(π z)

⇒ Imψ(1 + iy) ∼ − 1

2y
+
π

2
+ π

∞∑

k=1

e−2π k y

“raw” asymptotics inconsistent with analytic continuation

resurgence fixes this
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Transseries Example: Painlevé II (matrix models, fluids ... )

w′′ = 2w3(x) + xw(x) , w → 0 as x→ +∞
• x→ +∞ asymptotics: w ∼ σ Ai(x)
σ = real transseries parameter (flucs Borel summable)

w(x) ∼
∞∑

n=0

(
σ
e−

2
3
x3/2

2
√
π x1/4

)2n+1

w(n)(x)

• x→ −∞ asymptotics: w ∼
√
−x

2

transseries exponentials: exp
(
−2
√

2
3 (−x)3/2

)

imag. part of transseries parameter fixed by cancellations

• Hastings-McLeod: σ = 1 unique real solution on R



Borel Summation and Dispersion Relations

cubic oscillator: V = x2 + λx3
A. Vainshtein, 1964

z= h
2

. z o

C

R

E(z0) =
1

2πi

∮

C
dz

E(z)

z − z0
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π

∫ R

0
dz

ImE(z)

z − z0

=

∞∑

n=0

zn0

(
1

π

∫ R

0
dz

ImE(z)

zn+1

)

WKB ⇒ ImE(z) ∼ a√
z
e−b/z , z → 0

⇒ cn ∼
a

π

∫ ∞

0
dz

e−b/z

zn+3/2
=
a

π

Γ(n+ 1
2)

bn+1/2
X
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Instability and Divergence of Perturbation Theory

quartic AHO: V (x) = x2

4 + λx
4

4 Bender/Wu, 1969



recall: divergence of perturbation theory in QM

e.g. ground state energy: E =
∑∞

n=0 cn (coupling)n

• Zeeman: cn ∼ (−1)n (2n)!

• Stark: cn ∼ (2n)!

• quartic oscillator: cn ∼ (−1)nΓ(n+ 1
2)

• cubic oscillator: cn ∼ Γ(n+ 1
2)

• periodic Sine-Gordon potential: cn ∼ n!

• double-well: cn ∼ n!
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Bogomolny/Zinn-Justin mechanism in QM

... ...

• degenerate vacua: double-well, Sine-Gordon, ...

splitting of levels: a real one-instanton effect: ∆E ∼ e−
S
g2

surprise: pert. theory non-Borel summable: cn ∼ n!
(2S)n

I stable systems

I ambiguous imaginary part

I ±i e−
2S
g2 , a 2-instanton effect
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Bogomolny/Zinn-Justin mechanism in QM

... ...

• degenerate vacua: double-well, Sine-Gordon, ...

1. perturbation theory non-Borel summable:
ill-defined/incomplete

2. instanton gas picture ill-defined/incomplete:
I and Ī attract

• regularize both by analytic continuation of coupling

⇒ ambiguous, imaginary non-perturbative terms cancel !



Bogomolny/Zinn-Justin mechanism in QM

e.g., double-well: V (x) = x2(1− g x)2

E0 ∼
∑

n

cn g
2n

• perturbation theory:

cn ∼ −3n n! : Borel ⇒ ImE0 ∼ ∓π e−
1

3g2

• non-perturbative analysis: instanton: g x0(t) = 1
1+e−t

• classical Eucidean action: S0 = 1
6g2

• non-perturbative instanton gas:

ImE0 ∼ ±π e−2 1
6g2

• BZJ cancellation ⇒ E0 is real and unambiguous

“resurgence” ⇒ cancellation to all orders



Decoding of Trans-series

f(g2) =

∞∑

n=0

∞∑

k=0

k−1∑

q=0

cn,k,q g
2n

[
exp

(
− S
g2

)]k [
ln

(
− 1

g2

)]q

• perturbative fluctuations about vacuum:
∑∞

n=0 cn,0,0 g
2n

• divergent (non-Borel-summable): cn,0,0 ∼ α n!
(2S)n

⇒ ambiguous imaginary non-pert energy ∼ ±i π α e−2S/g2

• but c0,2,1 = −α: BZJ cancellation !

pert flucs about instanton: e−S/g2
(
1 + a1g

2 + a2g
4 + . . .

)

divergent:
an ∼ n!

(2S)n (a lnn+ b)⇒ ±i π e−3S/g2
(
a ln 1

g2
+ b
)

• 3-instanton: e−3S/g2
[
a
2

(
ln
(
− 1
g2

))2
+ b ln

(
− 1
g2

)
+ c

]

resurgence: ad infinitum, also sub-leading large-order terms
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Towards Resurgence in QFT

QM: divergence of perturbation theory due to factorial growth
of number of Feynman diagrams

QFT: new physical effects occur, due to running of couplings
with momentum

• asymptotically free QFT

⇒ faster source of divergence: “renormalons” (IR & UV)

QFT requires a path integral interpretation

• resurgence: ‘generic’ feature of steepest-descents approx.

• saddles, real and complex, BPS and non-BPS



Divergence of perturbation theory in QFT

• C. A. Hurst (1952); W. Thirring (1953):
φ4 perturbation theory divergent
(i) factorial growth of number of diagrams
(ii) explicit lower bounds on diagrams

• F. J. Dyson (1952):
physical argument for divergence in QED pert. theory

F (e2) = c0 + c2e
2 + c4e

4 + . . .

Thus [for e2 < 0] every physical state is unstable
against the spontaneous creation of large numbers of
particles. Further, a system once in a pathological state
will not remain steady; there will be a rapid creation of
more and more particles, an explosive disintegration of
the vacuum by spontaneous polarization.

• suggests perturbative expansion cannot be convergent



Euler-Heisenberg Effective Action (1935) review: hep-th/0406216

. . .

• 1-loop QED effective action in uniform emag field

• the birth of effective field theory

L =
~E2 − ~B2

2
+

α

90π

1

E2
c

[(
~E2 − ~B2

)2
+ 7

(
~E · ~B

)2
]

+ . . .

• encodes nonlinear properties of QED/QCD vacuum

the electromagnetic properties of the vacuum can be
described by a field-dependent electric and magnetic
polarisability of empty space, which leads, for example,
to refraction of light in electric fields or to a scattering
of light by light V. Weisskopf, 1936

http://inspirehep.net/record/653094?ln=en


QFT Application: Euler-Heisenberg 1935

• Borel transform of a (doubly) asymptotic series

• resurgent trans-series: analytic continuation B ←→ E

• EH effective action ∼ Barnes function ∼
∫

ln Γ(x)



Euler-Heisenberg Effective Action: e.g., constant B field

S = − B
2

8π2

∫ ∞

0

ds

s2

(
coth s− 1

s
− s

3

)
exp

[
−m

2s

B

]

S = − B
2

2π2

∞∑

n=0

B2n+4

(2n+ 4)(2n+ 3)(2n+ 2)

(
2B

m2

)2n+2

• characteristic factorial divergence

cn =
(−1)n+1

8

∞∑

k=1

Γ(2n+ 2)

(k π)2n+4

• reconstruct correct Borel transform:
∞∑

k=1

s

k2π2(s2 + k2π2)
= − 1

2s2

(
coth s− 1

s
− s

3

)



Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect

E field: QFT analogue of Stark effect

B2 → −E2: series becomes non-alternating

Borel summation ⇒ ImS = e2E2

8π3

∑∞
k=1

1
k2

exp
[
−km2π

eE

]
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Fig. 1. Pair production as the separation of a virtual vacuum
dipole pair under the influence of an external electric field.

asymptotic e+ e− pairs if they gain the binding energy of
2mc2 from the external field, as depicted in Figure 1. This
is a non-perturbative process, and the leading exponential
part of the probability, assuming a constant electric field,
was computed by Heisenberg and Euler [2,3]:

PHE ∼ exp

[
−π m2 c3

e E !

]
, (3)

building on earlier work of Sauter [18]. This result sets a
basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e !
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2. (4)

As a useful guiding analogy, recall Oppenheimer’s compu-
tation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2m E

3/2
b

eE!

]
. (5)

Taking as a representative atomic energy scale the binding

energy of hydrogen, Eb = me4

2!2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E !4

]
. (6)

This result sets a basic scale of field strength and inten-
sity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

!4
= α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2. (7)

These, indeed, are the familiar scales of atomic ioniza-
tion experiments. Note that E ionization

c differs from Ec

by a factor of α3 ∼ 4 × 10−7. These simple estimates
explain why vacuum pair production has not yet been
observed – it is an astonishingly weak effect with con-
ventional lasers [20,21]. This is because it is primarily a
non-perturbative effect, that depends exponentially on the
(inverse) electric field strength, and there is a factor of ∼
107 difference between the critical field scales in the atomic
regime and in the vacuum pair production regime. Thus,
with standard lasers that can routinely probe ionization,
there is no hope to see vacuum pair production. However,

recent technological advances in laser science, and also in
theoretical refinements of the Heisenberg-Euler computa-
tion, suggest that lasers such as those planned for ELI
may be able to reach this elusive nonperturbative regime.
This has the potential to open up an entirely new domain
of experiments, with the prospect of fundamental discov-
eries and practical applications, as are described in many
talks in this conference.

2 The QED effective action

In quantum field theory, the key object that encodes vac-
uum polarization corrections to classical Maxwell electro-
dynamics is the “effective action” Γ [A], which is a func-
tional of the applied classical gauge field Aµ(x) [22–24].
The effective action is the relativistic quantum field the-
ory analogue of the grand potential of statistical physics,
in the sense that it contains a wealth of information about
the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor

Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and

the magnetic permeability µij of the quantum vacuum,
and is obtained by varying the effective action Γ [A] with
respect to the external probe Aµ(x). The general formal-
ism for the QED effective action was developed in a se-
ries of papers by Schwinger in the 1950’s [22,23]. Γ [A] is
defined [23] in terms of the vacuum-vacuum persistence
amplitude

〈0out | 0in〉 = exp

[
i

!
{Re(Γ ) + i Im(Γ )}

]
. (8)

Note that Γ [A] has a real part that describes dispersive ef-
fects such as vacuum birefringence, and an imaginary part
that describes absorptive effects, such as vacuum pair pro-
duction. Dispersive effects are discussed in detail in Gies’s
contribution to this volume [25]. The imaginary part en-
codes the probability of vacuum pair production as

Pproduction = 1 − |〈0out | 0in〉|2

= 1 − exp

[
−2

!
Im Γ

]

≈ 2

!
Im Γ (9)

here, in the last (approximate) step we use the fact that
Im(Γ )/! is typically very small. The expression (9) can be
viewed as the relativistic quantum field theoretic analogue
of the well-known quantum mechanical fact that the ion-
ization probability is determined by the imaginary part
of the energy of an atomic electron in an applied electric
field.

From a computational perspective, the effective action
is defined as [22–24]

Γ [A] = ! ln det [iD/ − m]

= ! tr ln [iD/ − m] . (10)

WKB tunneling from Dirac sea
ImS → physical pair production rate

2eE
~
mc
∼ 2mc2

⇒

Ec ∼
m2c3

e~
≈ 1016V/cm

• Euler-Heisenberg series must be divergent
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Fig. 1. Pair production as the separation of a virtual vacuum
dipole pair under the influence of an external electric field.

asymptotic e+ e− pairs if they gain the binding energy of
2mc2 from the external field, as depicted in Figure 1. This
is a non-perturbative process, and the leading exponential
part of the probability, assuming a constant electric field,
was computed by Heisenberg and Euler [2,3]:

PHE ∼ exp

[
−π m2 c3

e E !

]
, (3)

building on earlier work of Sauter [18]. This result sets a
basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e !
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2. (4)

As a useful guiding analogy, recall Oppenheimer’s compu-
tation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp
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−4

3
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2m E

3/2
b

eE!

]
. (5)

Taking as a representative atomic energy scale the binding

energy of hydrogen, Eb = me4

2!2 ≈ 13.6 eV, we find

P hydrogen ∼ exp
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−2

3

m2 e5

E !4

]
. (6)

This result sets a basic scale of field strength and inten-
sity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

!4
= α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2. (7)

These, indeed, are the familiar scales of atomic ioniza-
tion experiments. Note that E ionization

c differs from Ec

by a factor of α3 ∼ 4 × 10−7. These simple estimates
explain why vacuum pair production has not yet been
observed – it is an astonishingly weak effect with con-
ventional lasers [20,21]. This is because it is primarily a
non-perturbative effect, that depends exponentially on the
(inverse) electric field strength, and there is a factor of ∼
107 difference between the critical field scales in the atomic
regime and in the vacuum pair production regime. Thus,
with standard lasers that can routinely probe ionization,
there is no hope to see vacuum pair production. However,

recent technological advances in laser science, and also in
theoretical refinements of the Heisenberg-Euler computa-
tion, suggest that lasers such as those planned for ELI
may be able to reach this elusive nonperturbative regime.
This has the potential to open up an entirely new domain
of experiments, with the prospect of fundamental discov-
eries and practical applications, as are described in many
talks in this conference.

2 The QED effective action

In quantum field theory, the key object that encodes vac-
uum polarization corrections to classical Maxwell electro-
dynamics is the “effective action” Γ [A], which is a func-
tional of the applied classical gauge field Aµ(x) [22–24].
The effective action is the relativistic quantum field the-
ory analogue of the grand potential of statistical physics,
in the sense that it contains a wealth of information about
the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor

Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and

the magnetic permeability µij of the quantum vacuum,
and is obtained by varying the effective action Γ [A] with
respect to the external probe Aµ(x). The general formal-
ism for the QED effective action was developed in a se-
ries of papers by Schwinger in the 1950’s [22,23]. Γ [A] is
defined [23] in terms of the vacuum-vacuum persistence
amplitude

〈0out | 0in〉 = exp

[
i

!
{Re(Γ ) + i Im(Γ )}

]
. (8)

Note that Γ [A] has a real part that describes dispersive ef-
fects such as vacuum birefringence, and an imaginary part
that describes absorptive effects, such as vacuum pair pro-
duction. Dispersive effects are discussed in detail in Gies’s
contribution to this volume [25]. The imaginary part en-
codes the probability of vacuum pair production as

Pproduction = 1 − |〈0out | 0in〉|2

= 1 − exp

[
−2

!
Im Γ

]

≈ 2

!
Im Γ (9)

here, in the last (approximate) step we use the fact that
Im(Γ )/! is typically very small. The expression (9) can be
viewed as the relativistic quantum field theoretic analogue
of the well-known quantum mechanical fact that the ion-
ization probability is determined by the imaginary part
of the energy of an atomic electron in an applied electric
field.

From a computational perspective, the effective action
is defined as [22–24]

Γ [A] = ! ln det [iD/ − m]

= ! tr ln [iD/ − m] . (10)

WKB tunneling from Dirac sea
ImS → physical pair production rate

2eE
~
mc
∼ 2mc2

⇒

Ec ∼
m2c3

e~
≈ 1016V/cm

• Euler-Heisenberg series must be divergent



QED/QCD effective action and the “Schwinger effect”
• formal definition:

Γ[A] = ln det (iD/+m) Dµ = ∂µ − i
e

~c
Aµ

• vacuum persistence amplitude

〈Oout |Oin〉 ≡ exp

(
i

~
Γ[A]

)
= exp

(
i

~
{Re(Γ) + i Im(Γ)}

)

• encodes nonlinear properties of QED/QCD vacuum

• vacuum persistence probability

|〈Oout |Oin〉|2 = exp

(
−2

~
Im(Γ)

)
≈ 1− 2

~
Im(Γ)

• probability of vacuum pair production ≈ 2
~ Im(Γ)

• cf. Borel summation of perturbative series, & instantons



Schwinger Effect: Beyond Constant Background Fields

• constant field

• sinusoidal or
single-pulse

• envelope pulse with
sub-cycle structure;
carrier-phase effect

• chirped pulse; Gaussian
beam , ...

• envelopes & beyond ⇒ complex instantons (saddles)

• physics: optimization and quantum control



Keldysh Approach in QED Brézin/Itzykson, 1970; Popov, 1971

• Schwinger effect in E(t) = E cos(ωt)

• adiabaticity parameter: γ ≡ mcω
e E

• WKB ⇒ PQED ∼ exp
[
−π m2 c3

e ~ E g(γ)
]

PQED ∼





exp
[
−π m2 c3

e ~ E

]
, γ � 1 (non-perturbative)

(
e E
ωmc

)4mc2/~ω
, γ � 1 (perturbative)

• semi-classical instanton interpolates between non-perturbative
‘tunneling pair-production” and perturbative “multi-photon pair
production”



Scattering Picture of Particle Production
Feynman, Nambu, Fock, Brezin/Itzykson, Marinov/Popov, ...

• over-the-barrier scattering: e.g. scalar QED

−φ̈− (p3 − eA3(t))2 φ = (m2 + p2
⊥)φ

b⇥p
a⇥p

�im

+im

“imaginary time method”

• pair production probability: P ≈
∫
d3p |bp|2

• imaginary time method

|bp|2 ≈ exp

[
−2 Im

∮
dt
√
m2 + p2

⊥ + (p3 − eA3(t))2

]

• more structured E(t) involve quantum interference



Carrier Phase Effect Hebenstreit, Alkofer, GD, Gies, PRL 102, 2009

E(t) = E exp

(
− t

2

τ2

)
cos (ωt+ ϕ)

• sensitivity to carrier phase ϕ ?

sensitive dependence on the other shape parameters, such
as !.

In fact, there is an even more distinctive dependence on
the carrier phase " upon which the form of the scattering

potential !!2ð ~k; tÞ is extremely sensitive. The carrier-
phase dependence is difficult to discuss in the WKB ap-
proach, because a nonzero carrier phase breaks the EðtÞ ¼
Eð!tÞ symmetry of the pulse shape, which in turn makes
the imaginary time treatment of the WKB scattering prob-
lem significantly more complicated [21]. But in the quan-
tum kinetic approach, the carrier phase causes no
computational problems; it is just another parameter. We
have found that the introduction of the carrier phase makes
the oscillatory behavior in the longitudinal momentum
distribution even more pronounced. This is shown in
Figs. 3 and 4, where the momentum distribution function
is plotted for " ¼ !#=4 and " ¼ !#=2. We see that, for
the same values of the other parameters, the oscillatory
behavior becomes more distinct as the phase offset in-
creases. The most distinctive momentum signature, how-
ever, is found for " ¼ !#=2, when the electric field is
totally antisymmetric. In this case, the asymptotic distri-

bution function fð ~k; tÞ vanishes at the minima of the oscil-
lations, as shown in Fig. 4. This feature also has a direct
analogue in the scattering picture: For an antisymmetric
field, the gauge potential Eq. (2) is symmetric, and so is the

scattering potential well !!2ð ~k; tÞ. In this case, perfect
transmission is possible for certain resonance momenta,
corresponding to zero reflection and thus zero pair produc-
tion. Also note that the center of the distribution shifts from
pkð1Þ ¼ 0 to a nonzero value again. These carrier-phase
effects provide distinctive signatures, strongly suggesting a
new experimental strategy and probe in the search for
Schwinger pair production.

These momentum signatures can also be understood in a
quantum-mechanical double-slit picture, which has first
been developed in the context of above-threshold ioniza-
tion with few-cycle laser pulses [35]: In this picture, the
oscillations are fringes in the momentum spectrum that
result from the interference of temporally separated pair

creation events. The fringes are large for" ¼ !#=2, since
then the field strength has two peaks of equal size (though
opposite sign) which act as two temporally separated slits.
Moving the carrier phase away from " ¼ !#=2 corre-
sponds to gradually opening or closing the slits, resulting in
a varying degree of which-way information and thus a
varying contrast of the interference fringes. A quantitative
consequence of this double-slit picture is that the width of
the envelope of the oscillations in the distribution function
is related to the temporal width of the slits. Thewidth of the
envelope of oscillations thus also becomes a probe of the
subcycle structure of the laser.
To complete the physical picture, we consider the over-

all envelope of the longitudinal momentum distribution,
again for " ¼ 0, averaging over the rapid oscillations.
When there are more than three cycles per pulse (! *
3), the peak of the momentum distribution is located near
pkð1Þ ¼ 0, whereas for ! & 3 the peak is shifted to a
nonzero value. Furthermore, the Gaussian width of the
employed WKB approximation Eq. (4), which scales
with

ffiffiffiffiffiffiffiffi
eE0

p
=~$, is obviously somewhat broader than the

true distribution, as is shown in Fig. 5. We can quantify
this discrepancy in the width, by extending the WKB result
beyond the Gaussian approximation inherent in Eq. (4). We
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FIG. 3. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for ! ¼ 5, E0 ¼ 0:1Ecr, and " ¼ !#=4. The center of the
distribution is shifted to pkð1Þ % 102 keV.
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FIG. 4. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for ! ¼ 5, E0 ¼ 0:1Ecr, and " ¼ !#=2. The center of the
distribution is shifted to pkð1Þ % 137 keV.

0 0.2 0.4 0.60.20.40.6
k MeV

1 10 14

3 10 14

5 10 14

FIG. 5. Comparison of the asymptotic distribution function

fð ~k;1Þ for ~k? ¼ 0 (oscillating solid line) with the prediction
of Eq. (4) (dotted line) and the improved WKB approximation
based on an expansion of Eq. (5) (dashed line) for ! ¼ 5, E0 ¼
0:1Ecr, and " ¼ 0.
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Carrier Phase Effect from the Stokes Phenomenon
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• interference produces momentum spectrum structure

t = +�
t = �⇥

interference

P ≈ 4 sin2 (θ) e−2 ImW θ: interference phase

• double-slit interference, in time domain, from vacuum

• Ramsey effect: N alternating sign pulses ⇒ N -slit system
⇒ coherent N2 enhancement Akkermans, GD, 2012

http://inspirehep.net/record/927719?ln=en


Worldline Instantons GD, Schubert, 2005

To maintain the relativistic invariance we describe a
trajectory in space-time by giving the four variables
xµ(u) as functions of some fifth parameter (somewhat
analogous to the proper-time) Feynman, 1950

• worldline representation of effective action

Γ = −
∫
d4x

∫ ∞

0

dT

T
e−m

2T

∮

x
Dx exp

[
−
∫ T

0
dτ
(
ẋ2
µ +Aµ ẋµ

)]

• double-steepest descents approximation:

• worldline instantons (saddles): ẍµ = Fµν(x) ẋν

• proper-time integral: ∂S(T )
∂T = −m2

ImΓ ≈
∑

saddles

e−Ssaddle(m2)

• multiple turning point pairs ⇒ complex saddles

http://inspirehep.net/record/687804?ln=en


Divergence of derivative expansion GD, T. Hall, hep-th/9902064

• time-dependent E field: E(t) = E sech2 (t/τ)

Γ = − m4

8π3/2

∞∑

j=0

(−1)j

(mλ)2j

∞∑

k=2

(−1)k
(

2E

m2

)2k Γ(2k + j)Γ(2k + j − 2)B2k+2j

j!(2k)!Γ(2k + j + 1
2)

• Borel sum perturbative expansion: large k (j fixed):

c
(j)
k ∼ 2

Γ(2k + 3j − 1
2)

(2π)2j+2k+2

Im Γ(j) ∼ exp

[
−m

2π

E

]
1

j!

(
m4π

4τ2E3

)j

• resum derivative expansion

Im Γ ∼ exp

[
−m

2π

E

(
1− 1

4

( m
Eτ

)2
+ . . .

)]

http://inspirehep.net/record/495103?ln=en


Divergence of derivative expansion

• Borel sum derivative expansion: large j (k fixed):

c
(k)
j ∼ 2

9
2
−2kΓ(2j + 4k − 5

2)

(2π)2j+2k

Im Γ(k) ∼ (2πEτ2)2k

(2k)!
e−2πmτ

• resum perturbative expansion:

Im Γ ∼ exp

[
−2πmτ

(
1− Eτ

m
+ . . .

)]

• compare:

Im Γ ∼ exp

[
−m

2π

E

(
1− 1

4

( m
Eτ

)2
+ . . .

)]

• different limits of full: Im Γ ∼ exp
[
−m2π

E g
(
m
E τ

)]

• derivative expansion must be divergent



Lecture 2

I uniform WKB and some magic

I resurgence from all-orders steepest descents

I towards a path integral interpretation of resurgence

I large N

I connecting weak and strong coupling

I complex saddles and quantum interference



Resurgence: recall from lecture 1

• what does a Minkowski path integral mean?
∫
DA exp

(
i

~
S[A]

)
versus

∫
DA exp

(
−1

~
S[A]

)

• perturbation theory is generically asymptotic

• resurgent trans-series

f(g2) =

∞∑

p=0

∞∑

k=0

k−1∑

l=1

ck,l,p g
2p

︸ ︷︷ ︸
perturbative fluctuations

(
exp

[
− c

g2

])k

︸ ︷︷ ︸
k−instantons

(
ln

[
± 1

g2

])l

︸ ︷︷ ︸
quasi-zero-modes

n

m



The Bigger Picture: Decoding the Path Integral

what is the origin of resurgent behavior in QM and QFT ?

n

m

to what extent are (all?) multi-instanton effects encoded in
perturbation theory? And if so, why?

• QM & QFT: basic property of all-orders steepest descents
integrals

• Lefschetz thimbles: analytic continuation of path
integrals



Towards Analytic Continuation of Path Integrals

The shortest path between two truths in
the real domain passes through the
complex domain

Jacques Hadamard, 1865 - 1963



All-Orders Steepest Descents: Darboux Theorem

• all-orders steepest descents for contour integrals:

hyperasymptotics (Berry/Howls 1991, Howls 1992)

I(n)(g2) =

∫

Cn

dz e
− 1
g2
f(z)

=
1√
1/g2

e
− 1
g2
fn T (n)(g2)

• T (n)(g2): beyond the usual Gaussian approximation

• asymptotic expansion of fluctuations about the saddle n:

T (n)(g2) ∼
∞∑

r=0

T (n)
r g2r



All-Orders Steepest Descents: Darboux Theorem

• universal resurgent relation between different saddles:

T (n)(g2) =
1

2π i

∑

m

(−1)γnm
∫ ∞

0

dv

v

e−v

1− g2v/(Fnm)
T (m)

(
Fnm
v

)

• exact resurgent relation between fluctuations about nth saddle
and about neighboring saddles m

T (n)
r =

(r − 1)!

2π i

∑

m

(−1)γnm

(Fnm)r

[
T

(m)
0 +

Fnm
(r − 1)

T
(m)
1 +

(Fnm)2

(r − 1)(r − 2)
T

(m)
2 + . . .

]

• universal factorial divergence of fluctuations (Darboux)

• fluctuations about different saddles explicitly related !



All-Orders Steepest Descents: Darboux Theorem

d = 0 partition function for periodic potential V (z) = sin2(z)

I(g2) =

∫ π

0
dz e

− 1
g2

sin2(z)

two saddle points: z0 = 0 and z1 = π
2 .

IĪ
vacuum vacuum

min. min.saddle



All-Orders Steepest Descents: Darboux Theorem

• large order behavior about saddle z0:

T (0)
r =

Γ
(
r + 1

2

)2
√
π Γ(r + 1)

∼ (r − 1)!√
π

(
1−

1
4

(r − 1)
+

9
32

(r − 1)(r − 2)
−

75
128

(r − 1)(r − 2)(r − 3)
+ . . .

)

• low order coefficients about saddle z1:

T (1)(g2) ∼ i√π
(

1− 1

4
g2 +

9

32
g4 − 75

128
g6 + . . .

)

• fluctuations about the two saddles are explicitly related



Resurgence in Path Integrals: “Functional Darboux Theorem”

could something like this work for path integrals?

“functional Darboux theorem” ?

• multi-dimensional case is already non-trivial and interesting
Pham (1965); Delabaere/Howls (2002)

• Picard-Lefschetz theory

• do a computation to see what happens ...



Resurgence in (Infinite Dim.) Path Integrals (GD, Ünsal, 1401.5202)

• periodic potential: V (x) = 1
g2

sin2(g x)

• vacuum saddle point

cn ∼ n!

(
1− 5

2
· 1

n
− 13

8
· 1

n(n− 1)
− . . .

)

• instanton/anti-instanton saddle point:

ImE ∼ π e−2 1
2g2

(
1− 5

2
· g2 − 13

8
· g4 − . . .

)

• double-well potential: V (x) = x2(1− gx)2

• vacuum saddle point

cn ∼ 3nn!

(
1− 53

6
· 1

3
· 1

n
− 1277

72
· 1

32
· 1

n(n− 1)
− . . .

)

• instanton/anti-instanton saddle point:

ImE ∼ π e−2 1
6g2

(
1− 53

6
· g2 − 1277

72
· g4 − . . .

)

http://inspirehep.net/record/1278369?ln=en
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Resurgence and Hydrodynamics (Heller/Spalinski 2015; Başar/GD, 2015)

• resurgence: generic feature of differential equations

• boost invariant conformal hydrodynamics

• second-order hydrodynamics: Tµν = E uµ uν + Tµν⊥

τ
dE
dτ

= −4

3
E + Φ

τII
dΦ

dτ
=

4

3

η

τ
− Φ− 4

3

τII
τ

Φ− 1

2

λ1

η2
Φ2

• asymptotic hydro expansion: E ∼ 1
τ4/3

(
1− 2η0

τ2/3
+ . . .

)

• formal series → trans-series

E ∼ Epert+e
−Sτ2/3 × (fluc) + e−2Sτ2/3 × (fluc) + . . .

• non-hydro modes clearly visible in the asymptotic hydro
series



Resurgence and Hydrodynamics (Başar, GD, 1509.05046)

• study large-order behavior (Aniceto/Schiappa, 2013)

c0,k ∼ S1
Γ(k + β)

2πi Sk+β

(
c1,0 +

S c1,1

k + β − 1
+

S2 c1,2

(k + β − 1)(k + β − 2)
+ . . .

)
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• resurgent large-order behavior and Borel structure verified to
4-instanton level

• ⇒ trans-series for metric coefficients in AdS

http://inspirehep.net/record/1393782?ln=en
http://inspirehep.net/record/1246809?ln=en


some magic: there is even more resurgent structure ...



Uniform WKB & Resurgent Trans-series (GD/MÜ:1306.4405, 1401.5202)

−~2

2

d2

dx2
ψ + V (x)ψ = E ψ

• weak coupling: degenerate harmonic classical vacua

⇒ uniform WKB: ψ(x) =
Dν
(

1√
~ϕ(x)

)
√
ϕ′(x)

• non-perturbative effects: g2 ↔ ~ ⇒ exp
(
−S

~
)

• trans-series structure follows from exact quantization
condition → E(N, ~) = trans-series

• Zinn-Justin, Voros, Pham, Delabaere, Aoki, Takei, Kawai, Koike, ...

http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en


Connecting Perturbative and Non-Perturbative Sector

Zinn-Justin/Jentschura conjecture:
generate entire trans-series from just two functions:

(i) perturbative expansion E = Epert(~, N)
(ii) single-instanton fluctuation function Pinst(~, N)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

E(~, N) = Epert(~, N)± ~√
2π

1

N !

(
32

~

)N+ 1
2

e−S/~ Pinst(~, N) + . . .

in fact ... (GD, Ünsal, 1306.4405, 1401.5202) fluctuation factor:

Pinst(~, N) =
∂Epert

∂N
exp

[
S

∫ ~

0

d~
~3

(
∂Epert(~, N)

∂N
− ~ +

(
N + 1

2

)
~2

S

)]

⇒ perturbation theory Epert(~, N) encodes everything !

http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en
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Resurgence at work
• fluctuations about I (or Ī) saddle are determined by those
about the vacuum saddle, to all fluctuation orders

• "QFT computation": 3-loop fluctuation about
I for double-well and Sine-Gordon:
Escobar-Ruiz/Shuryak/Turbiner 1501.03993, 1505.05115

DW : e−
S0
~

[
1−71

72
~−0.607535 ~2 − . . .

]

a b b

b b

b

b

1 11 21

12 22

23

24

−

−

−

1 1 1

1 1

1

1

8 48 16

24 12

8

8

d e f

g h

1

16
−

1

11
−

1

16 8

16 48

Figure 2: Diagrams contributing to the coefficient B2. The signs of contributions and symmetry

factors are indicated.

11

resurgence : e−
S0
~

[
1 +

1

72
~
(
−102N2 − 174N−71

)

+
1

10368
~2
(
10404N4 + 17496N3 − 2112N2 − 14172N−6299

)
+ . . .

]

• known for all N and to essentially any loop order, directly
from perturbation theory !

• diagramatically mysterious ...

http://arxiv.org/abs/1501.03993
http://arxiv.org/abs/1505.05115
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Connecting Perturbative and Non-Perturbative Sector

all orders of multi-instanton trans-series are encoded in
perturbation theory of fluctuations about perturbative vacuum

n

m

∫
DAe−

1
g2
S[A]

=
∑

all saddles

e
− 1
g2
S[Asaddle] × (fluctuations)× (qzm)



Analytic Continuation of Path Integrals: Lefschetz Thimbles
∫
DAe−

1
g2
S[A]

=
∑

thimbles k

Nk e−
i
g2
Simag[Ak]

∫

Γk

DAe−
1
g2
Sreal[A]

Lefschetz thimble = “functional steepest descents contour”
remaining path integral has real measure:
(i) Monte Carlo
(ii) semiclassical expansion
(iii) exact resurgent analysis

resurgence: asymptotic expansions about different saddles are
closely related

requires a deeper understanding of complex configurations and
analytic continuation of path integrals ...

Stokes phenomenon: intersection numbers Nk can change with
phase of parameters
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Thimbles from Gradient Flow

gradient flow to generate steepest descent thimble:

∂

∂τ
A(x; τ) = − δS

δA(x; τ)

• keeps Im[S] constant, and Re[S] is monotonic

∂

∂τ

(
S − S̄

2i

)
= − 1

2i

∫ (
δS

δA

∂A

∂τ
− δS

δA

∂A

∂τ

)
= 0

∂

∂τ

(
S + S̄

2

)
= −

∫ ∣∣∣∣
δS

δA

∣∣∣∣
2

• Chern-Simons theory (Witten 2001)

• comparison with complex Langevin (Aarts 2013, ...)

• lattice (Tokyo/RIKEN, Aurora, 2013): Bose-gas X



Thimbles and Gradient Flow: an example



Thimbles, Gradient Flow and Resurgence

Z =

∫ ∞

−∞
dx exp

[
−
(
σ

2
x2 +

x4

4

)]

(Aarts, 2013; GD, Unsal, ...)

Quartic model

relation to Lefschetz thimbles GA 13

critical points:

z0 = 0

z± = ±i
√

σ/λ

thimbles can be
computed
analytically

ImS(z0) = 0

ImS(z±) = −AB/2λ

-2 -1 0 1 2
x

-2

-1

0

1

2

y

stable thimble
unstable thimble
not contributing

σ = 1+i, λ = 1

for A > 0: only 1 thimble contributes

integrating along thimble gives correct result, with
inclusion of complex Jacobian

SIGN 2014 – p. 6

-4 -2 0 2 4
x

-4

-2

0

2

4

y

stable thimble
unstable thimble

• contributing thimbles change with phase of σ

• need all three thimbles when Re[σ] < 0

• integrals along thimbles are related (resurgence)

• resurgence: preferred unique “field” choice



Ghost Instantons: Analytic Continuation of Path Integrals
(Başar, GD, Ünsal, arXiv:1308.1108)

Z(g2|m) =

∫
Dx e−S[x] =

∫
Dx e−

∫
dτ
(

1
4
ẋ2+ 1

g2
sd2(g x|m)

)

• doubly periodic potential: real & complex instantons

instanton actions:

SI(m) =
2 arcsin(

√
m)√

m(1−m)

SG(m) =
−2 arcsin(

√
1−m)√

m(1−m)

http://inspirehep.net/record/1246808?ln=en


Ghost Instantons: Analytic Continuation of Path Integrals

• large order growth of perturbation theory:

an(m) ∼ −16

π
n!

(
1

(SIĪ(m))n+1
− (−1)n+1

|SGḠ(m)|n+1

)
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without ghost instantons with ghost instantons

• complex instantons directly affect perturbation theory, even
though they are not in the original path integral measure



Non-perturbative Physics Without Instantons
Dabrowski, GD, 1306.0921, Cherman, Dorigoni, GD, Ünsal, 1308.0127, 1403.1277

• O(N) & principal chiral model have no instantons !

• Yang-Mills, CPN−1, O(N), principal chiral model, ... all have
non-BPS solutions with finite action
(Din & Zakrzewski, 1980; Uhlenbeck 1985; Sibner, Sibner, Uhlenbeck, 1989)

• “unstable”: negative modes of fluctuation operator

• what do these mean physically ?

resurgence: ambiguous imaginary non-perturbative terms should
cancel ambiguous imaginary terms coming from lateral Borel
sums of perturbation theory
∫
DAe−

1
g2
S[A]

=
∑

all saddles

e
− 1
g2
S[Asaddle] × (fluctuations)× (qzm)

http://inspirehep.net/record/1237116?ln=en
http://inspirehep.net/record/1246022?ln=en
http://inspirehep.net/record/1283868?ln=en


Connecting weak and strong coupling

main physics question:

does weak coupling analysis contain enough information to
extrapolate to strong coupling ?

. . . even if the degrees of freedom re-organize themselves in a
very non-trivial way?

classical asymptotics is clearly not enough: is resurgent
asymptotics enough?

phase transitions?



Resurgence and Matrix Models, Topological Strings

Mariño, Schiappa, Weiss: Nonperturbative Effects and the Large-Order Behavior of Matrix

Models and Topological Strings 0711.1954; Mariño, Nonperturbative effects and

nonperturbative definitions in matrix models and topological strings 0805.3033

• resurgent Borel-Écalle analysis of partition functions etc in
matrix models

Z(gs, N) =

∫
dU exp

[
1

gs
trV (U)

]

• two variables: gs and N (’t Hooft coupling: λ = gsN)

• e.g. Gross-Witten-Wadia: V = U + U−1

• double-scaling limit: Painlevé II

• 3rd order phase transition at λ = 2: condensation of
instantons

• similar in 2d Yang-Mills on Riemann surface

http://inspirehep.net/record/767453?ln=en
http://inspirehep.net/record/786258?ln=en


Resurgence in the Gross-Witten-Wadia Model
Buividovich, GD, Valgushev 1512.09021 → PRL

• unitary matrix model ≡ 2d U(N) lattice gauge theory

• third order phase transition at λ = 2

Z =

∫
DU exp

[
N

λ
Tr(U + U †)

]

• in terms of eigenvalues eizi of U

Z =

N∏

i=1

π∫

−π

dzi e
−S(zi)

S(zi) ≡ −2N

λ

∑

i

cos(zi)−
∑

i<j

ln sin2

(
zi − zj

2

)

• at large N search numerically for saddles: ∂S
∂zi

= 0

http://inspirehep.net/record/1411667


Resurgence in the Gross-Witten-Wadia Model 1512.09021

• phase transition driven by complex saddles

λ = 1.5, m = 0
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• eigenvalue tunneling into the complex plane

• weak-coupling: “instanton” is m = 1 configuration

• has negative mode ⇒ resurgent trans-series

• strong-coupling: dominant saddle is m = 2, complex !

http://inspirehep.net/record/1411667


Resurgence in the Gross-Witten-Wadia Model 1512.09021

• weak-coupling “instanton” action from string eqn

S
(weak)
I = 4/λ

√
1− λ/2− arccosh ((4− λ)/λ) , λ < 2

• strong-coupling “instanton” action from string eqn

S
(strong)
I = 2arccosh (λ/2)− 2

√
1− 4/λ2, λ ≥ 2
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• interpolated by Painlevé II (double-scaling limit)

http://inspirehep.net/record/1411667


Resurgence and Localization

(Drukker et al, 1007.3837; Mariño, 1104.0783; Aniceto, Russo, Schiappa, 1410.5834)

• certain protected quantities in especially symmetric QFTs can
be reduced to matrix models ⇒ resurgent asymptotics

• 3d Chern-Simons on S3 → matrix model

ZCS(N, g) =
1

vol(U(N))

∫
dM exp

[
−1

g
tr

(
1

2
(lnM)2

)]

• ABJM: N = 6 SUSY CS, G = U(N)k × U(N)−k

ZABJM (N, k) =
∑

σ∈SN

(−1)ε(σ)

N !

∫ N∏

i=1

dxi
2πk

1
∏N
i=1 2ch

(
xi
2

)
ch
(
xi−xσ(i)

2k

)

• N = 4 SUSY Yang-Mills on S4

ZSYM (N, g2) =
1

vol(U(N))

∫
dM exp

[
− 1

g2
trM2

]

http://inspirehep.net/record/862248?ln=en
http://inspirehep.net/record/894974?ln=en
http://inspirehep.net/record/1323303?ln=en


Connecting weak and strong coupling

• often, weak coupling expansions are divergent, but
strong-coupling expansions are convergent
(generic behavior for special functions)

• e.g. Euler-Heisenberg

Γ(B) ∼ −m
4

8π2

∞∑

n=0

B2n+4

(2n+ 4)(2n+ 3)(2n+ 2)

(
2eB

m2

)2n+4

Γ(B) =
(eB)2

2π2

{
− 1

12
+ ζ ′(−1)− m2

4eB
+

3

4

(
m2

2eB

)2

− m2

4eB
ln(2π)

+

[
− 1

12
+

m2

4eB
− 1

2

(
m2

2eB

)2
]

ln

(
m2

2eB

)
− γ

2

(
m2

2eB

)2

+
m2

2eB

(
1− ln

(
m2

2eB

))
+

∞∑

n=2

(−1)nζ(n)

n(n+ 1)

(
m2

2eB

)n+1
}



Resurgence in N = 2 and N = 2∗ Theories (Başar, GD, 1501.05671)
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• energy: u = u(N, ~); ’t Hooft coupling: λ ≡ N ~

• very different physics for λ� 1, λ ∼ 1, λ� 1

• Mathieu & Lamé encode Nekrasov twisted superpotential

http://inspirehep.net/record/1340869?ln=en


Resurgence of N = 2 SUSY SU(2)

• moduli parameter: u = 〈tr Φ2〉
• electric: u� 1; magnetic: u ∼ 1 ; dyonic: u ∼ −1

• a = 〈scalar〉 , aD = 〈dual scalar〉 , aD = ∂W
∂a

• Nekrasov twisted superpotential W(a, ~,Λ):

• Mathieu equation: (Mironov/Morozov)

−~2

2

d2ψ

dx2
+ Λ2 cos(x)ψ = uψ , a ≡ N~

2

• Matone relation:

u(a, ~) =
iπ

2
Λ
∂W(a, ~,Λ)

∂Λ
− ~2

48



Mathieu Equation Spectrum: (~ plays role of g2)
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Mathieu Equation Spectrum

−~2

2

d2ψ

dx2
+ cos(x)ψ = uψ

• small N : divergent, non-Borel-summable → trans-series

u(N, ~) ∼ −1 + ~
[
N +

1

2

]
− ~2

16

[(
N +

1

2

)2

+
1

4

]

− ~3

162

[(
N +

1

2

)3

+
3

4

(
N +

1

2

)]
− . . .

• large N : convergent expansion: −→ ?? trans-series ??

u(N, ~)∼ ~2

8

(
N2 +

1

2(N2 − 1)

(
2

~

)4

+
5N2 + 7

32(N2 − 1)3(N2 − 4)

(
2

~

)8

+
9N4 + 58N2 + 29

64(N2 − 1)5(N2 − 4)(N2 − 9)

(
2

~

)12

+ . . .
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Resurgence of N = 2 SUSY SU(2) (Başar, GD, 1501.05671)

• N~� 1, deep inside wells: resurgent trans-series

u(±)(N, ~) ∼
∞∑

n=0

cn(N)~n ± 32√
πN !

(
32

~

)N−1/2

e−
8
~

∞∑

n=0

dn(N)~n + . . .

• Borel poles at two-instanton location

• N~� 1, far above barrier: convergent series

u(±)(N, ~) =
~2N2

8

N−1∑

n=0

αn(N)

~4n
± ~2

8

(
2
~
)2N

(2N−1(N − 1)!)2

N−1∑

n=0

βn(N)

~4n
+ . . .

(Basar, GD, Ünsal, 2015)

• coefficients have poles at O(two-(complex)-instanton)

• N~ ∼ 8
π , near barrier top: “instanton condensation”

u(±)(N, ~) ∼ 1± π

16
~ +O(~2)

http://inspirehep.net/record/1340869?ln=en


Conclusions

• Resurgence systematically unifies perturbative and
non-perturbative analysis, via trans-series

• trans-series ‘encode’ analytic continuation information

• expansions about different saddles are intimately related

• there is extra un-tapped ‘magic’ in perturbation theory

• matrix models, large N , strings, SUSY QFT

• IR renormalon puzzle in asymptotically free QFT

• multi-instanton physics from perturbation theory

• N = 2 and N = 2∗ SUSY gauge theory

• fundamental property of steepest descents

• moral: go complex and consider all saddles, not just minima
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